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ABSTRACT

When electron-electron correlations are important, it is often necessary to use "exact" numerical

methods, such as Lanczbs diagonalization, to study tl,2 full many-body Hamiltonian. Unfortunately,

such exact diagonalization methods are restricted to small system sizes. We show that if the Hubbard

U term is replaced by a "periodic Hubbard" term, the full many body Hamiltonian may be exactly

solved, even for very large systems, though for low fillings. However, for half-filled systems and large

U this approach is not only no longer exact, it no longer improves extrapolation to larger systems.

We discuss how generalized "randomized variable averaging" (RVA) or "phase randomization" schemes
can be reliably employed to improve extrapolation to large system sizes in this regime. This general

approach can be combined with any many-body method and is thus of broad interest and applicability.

INTRODUCTION

Solutions of the Peierls-Hubbard Hamiltonian (PHH) [1] for small clusters are strongly dependent

on the boundary condition (BC); i.e., for the case of polyacetylene, whether the carbon atoms are

viewed as being on a real ring, such as benzene, a real chain, such as (1,3,5)-hexatriene. or a more

exotic geometry, such as anti-periodic BCs. We have found that [2,3) to reduce finite size corrections

to the calculated optical gaps and spectra, thus improving the extrapolation to the infinite case, it is

effective to employ novel "averaging" techniques to "randomize" the many-body levels which influence

Ghose correlation functions of interest. Briefly, by randomization, we mean simply that the total energy

of the system is to be viewed as a weighted average of the energies derived separately for each of several

different "random" values (RV) of a particular parameter, which may be the BC, a hopping integral,

an on-site energy, or the Hubbard U: E = Z7j8V} xRVE[RV], where XRV is a normalized weighting

factor with Z{RV} XRV = 1. Similarly, any correlation function can be viewed as the average of of

its values from the separate RVs. The number of RV, NRV, may be varied, and the choice of the RV

and XRv may be truly random, or may be a pre-specified set of va!ues, which may in turn depend on
the quantity being studied. The case of phase randomization and its relation to Bloch's theorem are

described below. More generally, this randomized-variable-averaging (RVA) technique may be viewed

as a nrocedure to mimic disnrder.



\\'e focus in this nManuscI-ipt ou the cal'culiti(l via o ix. l.ainczo;a iii.,:i/;RIuof It hetZl

consistent uniform dimerization and one-plioton opticad absorption of the grouid :.,Itte withii, lbe I ),
1/2-filled, one-band PHI1. However, RVA is equally applicable to the calculation of, .q.. the phI',,io

modes of the ground state, a-s well as the geometry and self-consistent absorptions of doped 0, lhiflw,

lying (e.g., triplet) states [3], luminescence spectra, structure factors, etc., in single- or multi ha•id
models in 1-, 2-, and 3-1), via Lancz6s diagonalization, as well as other numericad procedures on mali

lattices, such as Monte Carlo.

PHASE BOUNDARY CONDITION AVERAGING AND BLOCH'S THEOREM
Bloch's theorem tells us that the single particle wavefunctions of a system of size M-N with

periodicity N and periodic boundary conditions (PBCs) are exactly the single particle wavelunctiormW

of the ensemble of systems of size N for each of the phase BCs v/(N + I) = c'O.'(1), q = 27-f/j.,
-I...,M. restated, the (exact) properties of t larger (singic parti"-'') ,yptarmin may he iou i v

forming a (particular) average over smaller systems with different BCs. This "boundary condition
averaging" (BCA) or "phase randomization" is a special case of our general RVA procedure. Blochs
theorem may be generalized to many particle wavefunctions and is applicable here if the form of the,
Hamiltonian is modified slightly. The one-dimensional PHH is

H =Z(-to +cab)(4ctct+l ±ct~l ct ) + U ~netn 2 ~KZE6'
1,or I t

If we replace the Hubbard term, U Z- n by its periodic analog,t=1 tnl yisproi nlg

'leg-elM N(2HeU (2)
,j_,! - T nE+g.N,Tfle+v.N,j

,,V= L t=1

then, if the original problem had periodicity N, (nt,oY = (nf+L,.N,,), we have, in a mean-field sense,

the "same" Hamiltonian. With this new "periodic-Hubbard" Hamiltonian (periodic PHH) the Bloch
analysis of a given large (periodic) system (N . M sites, Ne - M electrons) is accomplished by considering
a small system (N sites, N, electrons) with several different BCs. The method scales linearly with M.,
allowing one to handle reasonably large systems, and sets a sound theoreti-al basis for the empirical
observation [2] that RVA can be used to smooth optical absorption spectra obtained via exact finite-size

diagonalization.

Using the periodic-Hubbard term, Eq. (2), assuming the lattice distortion has the same periodicity.

6(t + N) = 6(e), and using ZF= n1 +,,.N, =- N, -M, one can show:

M N~ Ns"pe M i+..N,.Js Cji+i./S, X ll(i, j,k,t1; s1 ,s 2) ck+4 ,,Ns CI+ -.N .- (3)
IA,L=I i,j,k,i=l 3.1,S2=1,1

where
H(i,j,k, 1; si, s2) =H(i + N,j + N, k, ; s1, s2 )

=Hl(i,j,k,I;s2,,s) = tt(k,1,i,j;s1 ,s 2) = tJ(j,Z,k,1;si,s 2)

and

H t(i,j ,k ,1 ;s. ,s 2 ) I [ ,,=, .N (ij N 0 ,. )

N 62 , 0k,' +



Note that H(i,j,k,l;si, s 2 ) is independent of p, v, and Al. The Blo(ch anay.'sis on ti, many body

eigenfunctions using the symmetries of 11 (i, j, k, 1; q1l s,"2) leds to a T' of the foInm:

N

M A

Xl , - - . , oe=x ... x > . .. , n vl Cnl +t•l .N ~E nv +g ,-N,arp

where bk. k..k(nl,.,n...,nv) = Pk1 . . . . . . . . . .  ... ,ne+tt.N,...,nr) , k. (2i jiM), jc{O,...,-

1}, and p = N, • M. We find for i,j{l,...,N},

M N N
c' =. >3c+L+o-Nj'x.k >3 .3 ~.....kp(fll, .. ,np) C9.,,j

i. ,�--- n ,-'-,np=I t=1

M M M
ne kl- , IA I X "X E t eik tIAI X . . . X

X~~ E.....*~~jE Ci~eNcr Cn +mzv.N,ap

JA1=1 t l v l

(v0 comes into play for operators like CkNcN+I,,). From Eq. (5) we see Hper is diagonal in the k's,

H= E k, ..... k, = ,..... k , ,(p

as are p = t,. n1,o and J = i >to(-to + ae)(c•,cet+ , - ct+1,, cl,), and the eigenfunctions of tPer

can be written in the form Eq. (4).
The symmetry of %F implies that if aje = at, and kj, = kt, then nGt / nt,. Thus there are at most

2N of the ke the same. We postulate that the ground state lies in the manifold with each of the M
distinct values for kt occurring N, times and (for the half-filled band) with equal numbers of up and
down spins (in general, the largest manifold). This can be checked, and we stress that the analysis up
to this point is exact for the periodic PHH. In this manifold we can write T as:

2N

•= >3 q(a,,...,aM) ,,, (7)
O -,..OM=1

where qt =- (21rt/M) and

N

0-1= >3 T >3 >3

M M

x E c> e'qlm) x ... X E c' elt9N,'nl +/t~l N~alnN, +11N, .N,oN,

1tl=1 A'N =1

where Nt = [ N+'--l, N• = [[-k]] ([[ fl denotes integer value of). Note

CI+N,.CN,c, = Ct U,aCN,r ,N (S)

and so solving the Ne electron problem on the full N.M sites with PBCs for fixed q is exactly equivalent

to solving
Hpr 'N, = EN TN- (9)

e rq, q,a qa(

on N sites with the q-dependent BC defined by Eq. (8). Thus, to find the exact N, electron eigenfunc-
tions %P1N4 on N • M sites, we only need to solve Eq. (9) with N sites and N, electrons for each of the



To obtain the exact eigerfunctions of the full N..Al ,lectron proh)ici, w( 11ed to ,lvf,,

,ý"(al, _., af). This is where an approximation must be made to be able to solv,, tOw 1e rbl1emn mer.

ically, as we assume N is already as large as coniputationally feaisiblh. Th full N igenvalue prlo!b,

yields

Hper{ [ EN +'
SM (w0)

+ [ E nt+',NIl , ,ý I !+E N, } N,

vl= 1 p=l-- I

To solve Eq. (6) we must use some approximation for Eq. (10), such as perturbation theory or mean-

field. Thus BCA means we treat electron-electron correlations within the N, electron manifold exactly,

and electron-electron correlations between N, electron manifolds approximately. The 13CA results

reported here are zero-order perturbation theory: we have assumed o(e..., aM) to be a product of

6functions; i.e., for the ground state we use:

M't " V," . ';o ý So E Ntl
-- ql,0 -qt,O

t=1

Note that if we had been interested in systems at low filling (N, electrons), rather than near half filling

(Ne -M electrons), there would be no need to make any approximations.

Comparison of the periodic and standard Peierls-Hubbard Models at half-filling

At U=O Bloch's theorem for the many particle wavefunctions as formulated above is exact at all

fillings. For the half-filled PHH, we have just shown that phase BCA involves two approximations:

first, replacing the Hubbard term by Eq. (2), and, second, ignoring correlations between the N, particle
wavefunction leading to Eq. (11). We now test these approximations. In Fig. 1 we show the minimum

energy dimerization of an 8-site system as a function of U for (i) phase averaged solution and (ii)

the exact solution of the half-filled band with the periodic Hubbard term and periodicity 2,4, and

8 (periodicity 8 is the the usual Hubbard). The approximate periodic (BCA) solution lies between
the exact periodic solution and the exact pure-Hubbard solution. Since the original problem was for

U • M E,7M nt~ntl on N - M sites, one might argue that the approximate phase-averaged result for
U = nttnt, on N sites may be closer to the desired answer than the exact periodic-Hubbard N - Al

site result.

In Fig. 2 we show the dimerization amplitude obtained by phase BCA. We see that the extrapolated

infinite behavior at small to intermediate U is well approximated after phase averaging for N=10 even
without extrapolation. The agreement is best for small U, while no change from the pure periodic

behavior is found for large U. That this particular technique is expected to have no effect at large (J

can be seen by examining the effective spin-Peierls Hamiltonian [4], which is asymptotically independent

of the phase of the BC. However, the phase-averaged analysis does lead to the interpretation of the

finite-size result as the result for the larger system with an effective periodic-tHubbard interaction.

Thus, if U is scaled by the system size, as is done in Fig. 2, the infinite behavior should be more easily

extrapolated. It appears that this is at least approximately true.

To show how phase BCA affects the optical spectrum. in Fig. 3a we show the (Lorentzian broad-

ened) spectrum at U/to=0.4 for N=8 and 5 phase BCs (enough to yield a smooth spectrum at U1=0).

It is clear how the different BCs "fill in" the spectrum. Fig. 3b shows the spectrum at U/to= 1.6. Here,

despite the several BCs used, the spectrum remains sparse, due to the loss of effectiveness of the phase

BCA scheme as discussed above. If we were to use a broad enough Lorentzian to smooth this spectrum
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Fig. 1 (left). Comparison of the approximate and exact periodic-Hubbard minimum energy dimerization
as a function of U for t0 =2.5 eV, a=4.1 eV/Ak, and K=21 eV/A 2.

Fig. 2 (right). Dimerization vs. U for various N: phase BCA. Parameters as Fig. 1.

U, RV
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Fig. 3. The Lorentzian broadened optical absorption spectra calculated using the phase BCA method
for (a) U=1 eV and (b) U=4 eV. Note the "sparseness" of the spectrum in the latter case indicating
the failure of the phase BCA approach. For comparison, we also show the spectrum at U= 10 e0eV using
(c) amplitude BCA and (d) an RVA procedure where U is varied on one site. Note these RVA spectra
are dense and show the same features. Parameters as Fig. 1 but 6=0.14 A.

AMPLITUDE BOUNDARY CONDITION AVERAGING

The modification of the phase of the BC discussed above can also be viewed as passing a random
magnetic flux through an ensemble of closed ring and studying average properties. In this sense we have
"randomized" the locations of the momentum space states. We have already indicated that RVA can
help us transcend the limitations of this "bond phase/magnetic flux" approach. We can "randomize"
electronic properties by, e.g., changing a local hopping or an on-site energy or a Coulomb repulsion
somewhere on the chain. One could also introduce an additional field and vary it about zero. Although



[5], there is as yet no1 provably acciurate prescription for for arbitrary LV IAni• I - ]ow.vo.ei

intuitive rules must guide us. First, whatever change is inade to randoiiiize inst. ()I - r,. (b)

effectively. Second, the change in the system must be negligible ýs the lattice sizo i. islicreasoi i

infinity; for example, if only one bond or site is varied from calculation to calculation, then ol(,1 1,.t

of such a change is immaterial in the thermodynamic limit. Finally, the behavior for sTmadl latti,:,,

sizcz must be illustrative of the infinite-size limit. Put another way, one must still he able to 111k,*, a

reasonable extrapolation to the infinite chain.

We have found [2] an "amplitude BCA" ("scaled-hopping") technique to be effective and pro-

duce results in good agreement with expectations based on both strong- and weak-coupling analytic

arguments. For this method, we randomize by varying the magnitude rather than the phase of the
"boundary" hopping - i.e., between sites 1 and N - typically from -to to +to in ten to twenty equal

steps. The individual spectra are then added together with weights zi chosen to minimize the total

length of the final curve, though giving each spectra equal weight yields virtually identical results. This

clearly incorporates the special case of using only periodic (x=1) or antiperiodic (z=-l) rings, the
JT/nJT difference being important for weak coupling. It also incorporates the case of the open chain
(x=0), which has the "best" single BC size dependence (though with attendant "end effect" problems).

Finally, it works in the strong-coupling limit.

In Fig. 3c, we show the spectra produced by the amplitude BCA technique for for a larger U than
that in Fig. 3b where phase BCA failed. In Ref. [2] we showed that not only are the gross features

of the spectra obtained by amplitude BCA in agreement with strong-coupfing calculations [6], but in
addition they show substantially more interesting detail, such as the "decoupled-dimer" peak located

at - U/2 + V(U/2)2 + (2t 0 )2 in systems with strong electron-phonon and electron-electron couplings.

To emphasize the generality, in Fig. 3d we show the spectrum obtained by varying U on the first site

between 0 'and 20 eV. This large U variation produces states in the optical gap, but otherwise the

spectrum is unchanged from Fig. 3c. We feel that these results, and those in Ref.s [2,3], demonstrate

that RVA is an effective means for reducing (and in some cases practically eliminating) finite size

dependence, yielding results that can be confidently extrapolated to the infinite size limit, and which

are in good agreement with known analytic results.
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